Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Results Phys ; 24: 104098, 2021 May.
Article in English | MEDLINE | ID: covidwho-1164389

ABSTRACT

We propose a new mathematical model to investigate the recent outbreak of the coronavirus disease (COVID-19). The model is studied qualitatively using stability theory of differential equations and the basic reproductive number that represents an epidemic indicator is obtained from the largest eigenvalue of the next-generation matrix. The global asymptotic stability conditions for the disease free equilibrium are obtained. The real COVID-19 incidence data entries from 01 July, 2020 to 14 August, 2020 in the country of Pakistan are used for parameter estimation thereby getting fitted values for the biological parameters. Sensitivity analysis is performed in order to determine the most sensitive parameters in the proposed model. To view more features of the state variables in the proposed model, we perform numerical simulations by using different values of some essential parameters. Moreover, profiles of the reproduction number through contour plots have been biologically explained.

2.
Infect Dis Model ; 6: 448-460, 2021.
Article in English | MEDLINE | ID: covidwho-1086963

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is a novel virus that emerged in China in late 2019 and caused a pandemic of coronavirus disease 2019 (COVID-19). The epidemic has largely been controlled in China since March 2020, but continues to inflict severe public health and socioeconomic burden in other parts of the world. One of the major reasons for China's success for the fight against the epidemic is the effectiveness of its health care system and enlightenment (awareness) programs which play a vital role in the control of the COVID-19 pandemic. Nigeria is currently witnessing a rapid increase of the epidemic likely due to its unsatisfactory health care system and inadequate awareness programs. In this paper, we propose a mathematical model to study the transmission dynamics of COVID-19 in Nigeria. Our model incorporates awareness programs and different hospitalization strategies for mild and severe cases, to assess the effect of public awareness on the dynamics of COVID-19 infection. We fit the model to the cumulative number of confirmed COVID-19 cases in Nigeria from 29 March to 12 June 2020. We find that the epidemic could increase if awareness programs are not properly adopted. We presumed that the effect of awareness programs could be estimated. Further, our results suggest that the awareness programs and timely hospitalization of active cases are essential tools for effective control and mitigation of COVID-19 pandemic in Nigeria and beyond. Finally, we perform sensitive analysis to point out the key parameters that should be considered to effectively control the epidemic.

3.
Chaos Solitons Fractals ; 144: 110655, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1014399

ABSTRACT

Life style of people almost in every country has been changed with arrival of corona virus. Under the drastic influence of the virus, mathematicians, statisticians, epidemiologists, microbiologists, environmentalists, health providers, and government officials started searching for strategies including mathematical modeling, lock-down, face masks, isolation, quarantine, and social distancing. With quarantine and isolation being the most effective tools, we have formulated a new nonlinear deterministic model based upon ordinary differential equations containing six compartments (susceptible S ( t ) , exposed E ( t ) , quarantined Q ( t ) , infected I ( t ) , isolated J ( t ) and recovered R ( t ) ). The model is found to have positively invariant region whereas equilibrium points of the model are investigated for their local stability with respect to the basic reproductive number R 0 . The computed value of R 0 = 1.31 proves endemic level of the epidemic. Using nonlinear least-squares method and real prevalence of COVID-19 cases in Pakistan, best parameters are obtained and their sensitivity is analyzed. Various simulations are presented to appreciate quarantined and isolated strategies if applied sensibly.

4.
Eur Phys J Plus ; 135(10): 795, 2020.
Article in English | MEDLINE | ID: covidwho-910246

ABSTRACT

Coronaviruses are a large family of viruses that cause different symptoms, from mild cold to severe respiratory distress, and they can be seen in different types of animals such as camels, cattle, cats and bats. Novel coronavirus called COVID-19 is a newly emerged virus that appeared in many countries of the world, but the actual source of the virus is not yet known. The outbreak has caused pandemic with 26,622,706 confirmed infections and 874,708 reported deaths worldwide till August 31, 2020, with 17,717,911 recovered cases. Currently, there exist no vaccines officially approved for the prevention or management of the disease, but alternative drugs meant for HIV, HBV, malaria and some other flus are used to treat this virus. In the present paper, a fractional-order epidemic model with two different operators called the classical Caputo operator and the Atangana-Baleanu-Caputo operator for the transmission of COVID-19 epidemic is proposed and analyzed. The reproduction number R 0 is obtained for the prediction and persistence of the disease. The dynamic behavior of the equilibria is studied by using fractional Routh-Hurwitz stability criterion and fractional La Salle invariant principle. Special attention is given to the global dynamics of the equilibria. Moreover, the fitting of parameters through least squares curve fitting technique is performed, and the average absolute relative error between COVID-19 actual cases and the model's solution for the infectious class is tried to be reduced and the best fitted values of the relevant parameters are achieved. The numerical solution of the proposed COVID-19 fractional-order model under the Caputo operator is obtained by using generalized Adams-Bashforth-Moulton method, whereas for the Atangana-Baleanu-Caputo operator, we have used a new numerical scheme. Also, the treatment compartment is included in the population which determines the impact of alternative drugs applied for treating the infected individuals. Furthermore, numerical simulations of the model and their graphical presentations are performed to visualize the effectiveness of our theoretical results and to monitor the effect of arbitrary-order derivative.

SELECTION OF CITATIONS
SEARCH DETAIL